Toxic Menu

Contamination of Whale Meat and Impact on Consumers’ Health

Rich in mercury, PCB and DDT.

Whale meat

A review by Dr. Sandra Altherr and Sigrid Lüber
© 2009, 2012 (2nd edition)

Title: Jana Rudnick (Pro Wildlife), Photo from EIA
Text: Dr. Sandra Altherr (Pro Wildlife) and Sigrid Lüber (OceanCare)

Pro Wildlife
Kidlerstr. 2, D-81371 Munich, Germany
Phone: +49(089)81299-507
mail@prowildlife.de
www.prowildlife.de

OceanCare
Oberdorfstr. 16, CH-8820 Wädenswil, Switzerland
Phone: +41 (044) 78066-88
info@oceancare.org
www.oceancare.org

Acknowledgements:

The authors want to thank

- Claire Bass (World Society for the Protection of Animals, UK)
- Sakae Hemmi (Elsa Nature Conservancy, Japan)
- Betina Johne (Pro Wildlife, Germany)
- Clare Perry (Environmental Investigation Agency, UK)
- Annelise Sorg (Canadian Marine Environment Protection Society, Canada)

and other persons, who want to remain unnamed, for their helpful contribution of information, comments and photos.
At its 64th meeting in July 2012 the International Whaling Commission (IW) will decide on a Resolution regarding contaminant burden in whale products and associated health risks for consumers. This initiative is the logic consequence of accumulating alarming findings: In late 2011, scientists presented the outcome of five cohort studies at the Faroe Islands, showing the link between an increasing number of human diseases and contamination of whale products (Weihe & Grandjean 2012). Another recent cohort study in Nunavik, Canada, found a correlation between consumption of beluga meat and “poor intellectual function and attention in schools” (Nunavik Regional Board of Health 2011). Already in 2008, the Faroese health authorities recommended to their regional Government that pilot whale meat should no longer be used for human consumption (Weihe & Joensen 2008). However, the Faeroese Government just issued revised guidelines and only advised women planning pregnancy, being pregnant or breast-feeding to refrain from eating whale meat (Faeroese Food and Veterinary Authority 2011).

The serious impact on the consumers’ health is not a new phenomenon: Already in 1996, alarming findings indicated a reduction of neuropsychological abilities in Faroese children due to a diet-based mercury exposure (Weihe et al. 1996). Studies in other regions, such as Arctic Canada, Greenland or Japan, also showed alarming pollution levels in whale products and associated human diseases, including Parkinson’s disease (Wermuth et al. 2008, 2000), suppression of the immune systems (INAC 2003a), and increased respiratory infections in children (Van Oostdam et al. 2005).

Many governments have set safety limits for mercury in sea food. Officials in Canada, Japan, and Norway gave food advice for pregnant and nursing women, but not for other human population groups. However, the enormous risks from cetacean products can no longer be ignored. Climate change may even worsen the scenario by releasing chemicals from ice (SOCER 2005 and literature therein). The risks may even affect political economies: Scientists warn that neurological deficits, resulting from prenatal exposure to mercury, may weaken the national economy (Trasande et al. 2005).

In some geographic regions, people, such as the Inuit and the Chukotka, still depend on traditional food as an important part of their diet. Traditional food is important for their well-being and has a cultural function. Therefore, benefits of traditional foods must be weighed against health risks. Nevertheless, whale products are only one part of traditional food, and an increased consumption of less contaminated alternatives would help to avoid health risks for consumers (Deutch 2006; Johansen et al. 2004). In industrial nations with high living standards, whale meat is not a vital food component. In addition to the current political, cultural or animal welfare-motivated discussions on whaling, the health aspect needs be considered as a priority.

The IWC, the World Health Organisation (WHO), and consumer protection organisations should draw the conclusions from the scientific findings: They should urge whaling nations to assess and inform consumers of whale products on health risks. Aboriginal people should reduce the consumption of whale products. In societies with high living standards and sufficient food alternatives, however, a cessation of whale consumption is the only legitimate advice.
2. Contaminants and pathogens in whales

Cetaceans, especially toothed whales, are on the top of the marine food web. Their high trophic level, combined with their longevity, makes whales among those animals accumulating the highest levels of toxic substances. Blubber, liver and kidney are among the tissues with the highest pollutant load. The contamination level in whales differs geographically, which reflects different feeding strategies and degrees of pollution. Arctic toothed whales are especially vulnerable to chemical exposures due to their large amount of body fat. Most data exist on the impact of organochlorines and mercury. However, increasing scientific data on new contaminants and pathogens in whale products are available (see for example SOCER reports 2004, 2005, and 2008). The present report therefore only highlights the levels in cetaceans that are hunted and consumed by humans. Table 1 (Annex) gives an overview of contamination levels in toothed whales, table 2 (Annex) on the findings in baleen whales.

2.1. Heavy metals: mercury

Mercury toxicity – especially with the organic form methyl-mercury (Me-HG) – in marine mammals can cause weight loss, liver anomalies, prevalence of parasitic infections, pneumonia, and premature birth. Mercury concentrations increase with whale body size because this heavy metal is accumulated over the lifetime (Das et al. 2003).

In most cetacean species, highest mercury concentrations are found in the liver (see table 1 and 2, Annex). Mercury levels in beluga and narwhal of the Canadian Arctic are higher than in other marine mammals, such as walrus. In Canada, concentrations of up to 44.3 μg/g were found in liver of belugas, in narwhal even levels of up to 137 μg/g; in Greenland, mercury in liver reached levels of 73.3 μg/g (table 1, AMAP 2011), Annex. At the Faroe Islands, analysis of long-finned pilot whales revealed values of up to 179 μg/g in liver and 30 μg/g in blubber (Hoydal & Dam 2005; Weihe et al. 1996). Also in the western North Pacific, findings are alarming: In sperm whale liver, maximum levels of 130 μg/g were detected. Liver of Risso’s dolphins contained up to 645 μg/g. In short-finned pilot whales, mercury content in liver peaked at 422 μg/g, in striped dolphins as high as 452 μg/g. The latter species also contained up to 1,980 μg/g in kidney and 153 μg/g in lung (Endo et al. 2004).

In baleen whales, mercury burdens are lower, but in the Northwest Pacific levels of up to 13.7 μg/g (Endo et al. 2004) and 2 μg/g off Greenland and Norway (AMAP 2011) were found in the liver of minke whales. In Bryde whales, maximum levels described so far are 0.6 μg/g in kidney and 0.49 μg/g in liver (Yasunaga & Fujise 2009c). A maximum of 4.4 μg/g was found in liver and 2.3 μg/g in kidney of gray whales in Alaska (Varanasi et al. 1993).

In general, mercury levels have not significantly changed in recent decades, but varied geographically (INAC 2007). In some beluga populations (e.g. Beaufort Sea and western Hudson Bay), however, mercury has increased up to the fourfold between 1993 and 2003 (INAC 2003b). The long-term impacts of these mercury burdens, especially in combination with other toxic substances, on the health of toothed and baleen whales are still unknown.

2.2. Organochlorines: PCB, DDT, & CHL

Organochlorine compounds are lipophilic, i.e. soluble in fat, and therefore accumulate particularly in fatty tissue, such as blubber. Among the most toxic substances are PCBs (polychlorinated biphenyls), DDT (dichlorodiphenyl-trichlor-ethane) and CHL (Chlordane). PCB levels in some Arctic cetacean species, e.g. pilot and minke whales, belugas, narwhals, are reaching concentrations that may affect reproduction and induce immunosuppression (SOCER 2005, 2004 and literature therein; De Guise et al. 1995). Small cetaceans metabolise PCB only minimally compared to birds and terrestrial mammals (Borrell 1993).

Highest PCB levels so far detected in cetaceans are 30 μg/g in pilot whale blubber at the Faroe Islands (Weihe et al. 1996), 18.7 μg/g in minke whale blubber from Norway (Hassauer et al. 2002), and 17.8 μg/g in Dall’s por-
poise blubber (Subramaniam et al. 1987). Johansen et al. (2004) emphasize the very high PCB concentrations in blubber of both beluga and narwhal.

Maximum DDT concentrations so far were found in blubber from Northwest Atlantic humpback whales (23.1 μg/g), Japanese striped dolphins (17.1 μg/g), from sperm whales in the Caribbean (15.5μg/g, Simmonds & Johnston 1994), and in muscle from Greenlandic minke whales (14.8 μg/g, Hassauer et al. 2002).

To date, highest chlordanes-burdens are known from blubber from beluga (5.97 μg/g, Stern et al. 2005) and narwhal (2.6 μg/g, INAC 2003b) off Canada. Chlordane levels in both species from Greenland are also very high (Johansen et al. 2004).

Generally, contamination levels are highest in adult males, but levels vary significantly in animals from different areas: Among minke whales in the North Atlantic and European Arctic, levels of PCB, DDT and CHL in blubber generally increased from west to east, and were especially high near the Lofoten for PCB and DDT, and near Spitsbergen and the Barents Sea for CHL (Hobbs et al. 2003; Kleivane & Skaare 1998).

Belugas and narwhals off Greenland have very high PCB concentrations in blubber, whereas muscle, liver, kidney, and skin showed low to medium levels. For blubber of both species, CHL level is also very high, and in liver, kidney, muscle and skin still reach high levels (Johansen et al. 2004, for details see section 3.3.1).

Due to their lower trophic level, Arctic bowhead whales have lower organochlorine levels than other cetaceans (SOCER 2005 and literature therein). Liver of adult males contained significantly higher levels of PCB and DDT, compared to females (for details see table 2, Annex), whereas chlordanes were lower in males (O’Hara et al. 1999). In bowhead whales from Beaufort-Chukchi, levels in blubber reached 0.54 μg/g lw for PCB, 0.44 μg/g for DDT, and 0.26 μg/g for chlordane (Hoekstra et al. 2003).

Even in the Antarctic, bio-magnification of contaminants has recently been described: Persistent organic pollutants levels of up to 160-fold relative to their krill prey have been found in seals (SOCER 2005 and literature therein) and similar accumulation can be assumed for cetaceans. PCBs, DDTs, CHLs and other substances were detected in all the blubber samples of Antarctic minke whales taken in JARPA (table 2, Annex, Yasunaga et al. 2005).

Melting ice passes contaminants into the oceans. Accordingly, scientists fear that climate change could accelerate the input of PCBs into the Arctic marine food web, which would aggravate the contamination level in Arctic cetaceans (SOCER 2005 and literature therein).

2.3. Other Persistent Organic Pollutants: PBDE & Co.

Recently, new classes of persistent organic pollutants (POPs) have been increasingly found in cetaceans. For example, since the mid 1980s a significant rise of polybrominated substances (PBDEs) has been observed in belugas and North Atlantic harbour porpoises (Beineke 2003). In southeast Baffin, levels of some PBDE substances have increased up to 30fold (INAC 2003b). In muscle of North Atlantic minke whales, PBDE concentrations reach up to 4.9 μg/kg, in blubber even up to 573.7 μg/kg (Hassauer et al. 2002). In blubber of long-finned pilot whales, values of up to 3.2 μg/g lipid have been found (Lindström et al. 1999).

PBDEs are used as flame-retardants and are known to have immune-toxic and endocrine-disrupting effects. They can cause neurological and developmental abnormalities and may change reproductive success. There is also evidence that PBDEs are more toxic when combined with PCBs. So far, PBDE levels in whale tissues have been comparably low, but, contrary to PCBs, the
concentrations of PBDEs are increasing in the environment, and it is feared that "**PBDEs may surpass PCBs in a few decades to become the most prevalent organohalogen compound**" (SOCER 2005 and literature therein; INAC 2003b).

**Fluorinated substances** have been found in pilot whales from the Faroe Islands, in northern minke whales caught off Greenland (Bossi et al. 2005) as well as in beluga and narwhals in the eastern Arctic (Tomy et al. 2004; SOCER 2005 and literature therein).

Only in recent decades have **short-chained chlorinated paraffins (SCCPs)** been found in cetaceans, e.g. in belugas, narwhals and minke whales from Greenland: Highest levels are known from belugas, with 0.28 μg/g wet weight in blubber (INAC 2003b).

### 2.4. Brucella

The bacterium *Brucella* sp. causes the infectious disease brucellosis, which is a comparatively new phenomenon in both marine mammals and humans. However, the high occurrence in whale and dolphin populations all over the world – an endemic infection of up to 78% (CFSPH 2007) – calls for considering this item in the context of human health assessment of whaling.

At least two North Pacific species of baleen whales are infected: In the JARPN program, up to 38% of the minke whales tested positive for *Brucella* antibodies, in Bryde whales 9% tested positive (Ohishi et al. 2003). In the North Atlantic, *Brucella* pathogens have been found in several cetaceans, with 14% of investigated sei whales, 11% of fin whales and 8% of minke whales being infected (Tryland et al. 1999). Antibodies were also detected in pygmy sperm whales (CFSPH 2007), but hitherto not in Antarctic minke whales and in sperm whales (Ohishi et al. 2007; 2003).

*Brucella* is also known to affect small cetaceans. For example, 53% of Pacific bottlenose dolphins off the Solomon Islands are antibody positive (Tachibana et al. 2006). The pathogen has also been detected in striped and common dolphins, Maui’s dolphins; beluga, narwhal, pilot and killer whales, harbour porpoise, short- and long-beaked dolphins, white beaked dolphins, white-sided, white-headed, dusky, Burmeister’s and Hector’s dolphins (Hernández-Mora et al. 2008; CFSPH 2007; New Zealand Department of Conservation 2007; Groussaud et al. 2007; González et al. 2002).

*Brucella* may induce chronic meningoencephalitis, abortions, inflammation of testes, infections, peritonitis, and hepatic abscesses in cetaceans (SOCER 2004 and literature therein). **Marine mammal Brucella can also infect humans.** According to CFSPH (2007), people may be increasingly exposed, particularly when dressing carcasses or consuming raw meat. In humans, headache, fatigue, severe sinusinitis, chronic vomiting, and epileptic seizures have been diagnosed due to marine mammal-associated *Brucella* strains. So far, only four cases of *Brucella*-transfer from cetaceans to humans are scientifically described (Sohn et al. 2003; McDonald et al. 2006); however, further cases may be under-diagnosed (CFSPH 2007). Transmission pathways remain unclear.

### 3. Health Risks for humans

In the 1960s/1970s the “Minamata disease” in Japan (section 3.1.1) showed the disastrous aftermath of mercury toxification, when tons of industrial mercury had been dumped into local waters. In the following years, thousands of people fell ill or died; many newborns showed severe deformities or neurological disorders due to the prenatal mercury exposure (Harada 1995).

Bio-magnification of toxic substances in marine food webs may be extraordinary for species from high trophic levels such as many cetaceans. Toxic substances, ingested through whale meat, are known to negatively impact human health (NRC 2000; Stern et al. 2004; for details see table 4, in Annex). Results, with a focus on mercury, PCB and DDT, are available from many regions:

- In the Faroe Islands (section 3.2), a correlation between a variety of diseases or abnormal developments in humans and consumption of pilot whale meat has been indicated (details see section 3.2.1.).
• The daily intake of mercury for Arctic Inuit has been estimated at 170 μg/day of marine mammal meat and 2.4 μg/day of blubber. More than 93% of their daily mercury intake is from marine mammals (Mahaffey & Rice 1997).

• In Inuit children, who have been exposed to PCB in the womb and during weaning, both birth weight and immune system function are reduced (AMAP 1997).

• Interaction from co-exposure to low doses of both mercury and PCB enhances neurotoxicological effects (Fischer et al. 2008).

• Whereas a reduction of whale meat intake due to dietary advice resulted in lower mercury levels in consumers, PCBs levels remained high, as they are more persistent (Weihe 2007; Weihe et al. 2003).

• Only recently, new compounds such as organic fluorines and PBDEs were found in humans whose diet includes whale meat (Weihe et al. 2008; Fängström et al. 2005; Bossi et al. 2005).

Although the toxicity of mercury, PCB & Co. are widely accepted, in some countries so far no national safety limits for these substance are set, and in those with safety limits, these may vary significantly (table 3, Annex).

### 3.1. Japan

In recent years Japan has been step by step expanding its “scientific whaling”, using a loophole of the ICRW. Presently, Japan has set an annual quota for 850 minke, 50 humpback and 50 fin whales to be caught in the Antarctic region (JARPA II) and 340 minke, 50 Bryde’s, 100 sei and 10 sperm whales in the western North Pacific (JARPN II; IWC 2009d). Additionally, smaller species such as Dall’s porpoise, striped and bottlenose dolphin, Risso’s dolphin, short-finned pilot whale, and Baird’s beaked whale are hunted in drive fisheries, hand harpoon hunts and small-type coastal whaling, with a total number of 16-20,000 annually (NRIFSF 2005, 2004, 2002).

In the year 2000 alone, “scientific whaling” yielded 2,400 tons of whale products, the hunting of small cetaceans 1,720 tons of products (Endo et al. 2003). Since then, the hunting of large whale species has been further intensified. Fresh and frozen red meat, the most popular whale products in Japan, as well as boiled internal organs, including liver, lung, kidney and small intestine, are on sale in Japanese retail outlets and supermarkets. Contrary to the Government’s version, consumption of whale meat in Japan does not have a long tradition, apart from a few communities in which small cetaceans have been caught for about 400 years. Instead, whale products became only popular after the Second World War due to acute foot shortage (Head 2005; Nanami 2001).

Presently, products from both baleen and toothed whales are on sale. The range includes northern and southern minke whale, Bryde, sei, fin, and sperm whale from JARPA and JARPN. The hunting of small cetaceans has exploded from less than 5,000 animals annually before the IWC moratorium to 15-20,000 since then. These numbers reveal that small cetaceans have been used to replace large whales on the markets (EIA 2005).

### 3.1.1. Health implications from whale products in Japan

In 1980, Japanese scientists raised alarm about the high mercury levels in whale meat sold in Japanese markets (Taguchi et al. 1980). Their paper, presented at the IWC Scientific Committee, highlighted that mercury levels in all meat samples from toothed whales in Japan were substantially higher than national safety limits. Since
then, Japanese scientists regularly detected high levels of mercury and PCB in whale meat from Japanese markets, which exceeded national health advisory levels for marine foods (0.4 μg/g for mercury and 0.5 μg/g for PCB) several fold. This was the case for small cetaceans (see table 1, Annex) and the large minke and Bryde whales in the North Pacific (see table 2, Annex), but not for minke whales from the Antarctic (Haraguchi et al. 2000). A chronology of scientific findings:

- **2000**: Mercury and PCB levels in both small cetaceans and northern Pacific minke whales exceeded Japanese safety levels (Haraguchi et al. 2000).

- **2002**: Mercury levels of up to 1,980 μg/g were identified, which exceed Japanese health advisory levels by up to 5,000 fold (Endo et al. 2002). The authors state that “**only 0.15 g of liver exceeds the permitted weekly intake** [set by WHO at 5 μg/kg /week]… suggesting the possibility of an acute intoxication by total mercury even after a single consumption of the product.” On average, mercury levels in cetacean livers were 370 μg/g – 900 times the government’s limit.

- **2003**: A new survey found **all 137 whale and dolphin meat samples exceeding the safety limits**, some of them 200 fold (Endo et al. 2003).

- **2004**: Red meat from small cetaceans the total mercury level exceeded the safety limits by 22 times (Endo et al. 2004).

- **2005**: Boiled liver of different dolphin species, offered for sale, has such high mercury levels that it **induces renal toxicity** (Endo et al. 2005b).

- **2008**: In striped dolphins, contamination levels for PCB and DDT had not changed significantly during 1978-2003, whereas levels of **PBDE and other brominated substances** significantly increased within that period (Isobe et al. 2008).

- **2009**: In sperm whales from the North Pacific, mercury levels of up to 130 μg/g were detected (Yasunaga & Fujise 2009c), which is 325 fold the allowed limit.

- **2009**: Even in baleen whales, liver and kidney of **minke whales from the North Pacific** exceeded the Government’s safety limit, peaking at 0.8 μg/g and 1.3 μg/g, respectively. This was also the case for **Bryde’s whales**, having maximal levels of 0.49 μg/g in liver and 0.6 μg/g in kidney (Yasunaga & Fujise 2009c).

- **2011**: **Baird’s beaked whales**, captured off Wada, Chiba, had levels of 1.42 μg/g, exceeding maximal allowance level by 3.5 times (Hemmi 2012).

Since 2001, the Japanese law demands a correct labelling of seafood. In 2003, however, the Japanese Health Ministry found 10% of “whale” products on sale in Japanese markets to be mislabelled. NGOs even estimate the mislabelling rate to more than one third (EIA 2004; Oceancare 1999). Much of this “whale meat” originates from higher contaminated small cetaceans.

### 3.1.2. Governmental response to human health risks

Japanese authorities should be especially aware of the risk for mercury poisoning due to the Minamata disaster of the 1950s, when more than 10,000 people were sickened and an estimated 3,000 people killed in the city of Minamata as a consequence of mercury dumped into the sea as industrial waste. But today’s reality is different: Although the Government’s Health Ministry took some measure to meet the problem, these measures are insufficient and are undermined by the actions of other government departments:

#### a) Insufficient controls

Whereas national safety limits for contaminants in seafood do exist, a large portion of whale products on sale still significantly exceeds the limits. Scientists criticize that the Japanese Government failed to react to their findings (Endo et al. 2002). The scientific findings had been published in scientific journals, but rarely in Japanese media, and hence remained ignored by the broad public for several years.
b) Health advices – late and incomplete

As a consequence of Endo’s findings, the Japanese Health Ministry conducted its own investigations on cetacean products from five species and, as a result, in 2003 issued safety guidelines for pregnant women on the consumption of four species as follows: to limit “Meat of bottlenose dolphin, in 60 to 80 g per serving size, to once per two months or less, and meat of Baird beaked whale, short-finned pilot whale, and sperm whale (muscle meat only), in 60 to 80 g per serving size, to once a week or less” (JMHLW 2003).

However, other cetacean species on sale in Japan – among them the most intensively hunted Dall’s porpoise – were not considered in this advice. Furthermore, the advice was based on a provisional tolerable weekly intake (PTWI) of 3.3 μg/kg and week. Shortly afterwards in 2003, FAO and WHO revised the PTWI from 3.3 to 1.6 μg/kg per week (Endo et al. 2005). It took two years before the Japanese officials revised their advice for pregnant women (JMHLW 2005) as follows: “Meat of bottlenose dolphin: up to 80g per 2 months (10 g/week); Short-finned pilot whale: a max of 80g per 2 weeks (40 g/week); Baird’s beaked/sperm whale: up to 80 g/week; Dall’s porpoise: up to 160 g/week.”

Although Dall’s porpoises were added in this second advice, other cetacean species still remained unconsidered, such as Risso’s dolphin and false killer whales, although they also exceed the safety limits for mercury.

c) Dumping prices to push consumption

In Japan, whale products remain luxury goods, with prices of typically 450 yen per 100 g and up to 2,500 yen per 100 g bacon block (Anon. 2006). In 2005, the domestic whale meat stock piles had mounted up to 3,900 tonnes, according to Japan’s second biggest newspaper Asahi Shimbun (Anon 2006). Just at that time the Government decided to expand JARPA and JARPN, and stockpiles hence threatened to further expand to 5,500 tonnes. As a first step the Japanese Government decreased the prices for whale products (Kher 2006), but national demand did not increase as hoped. In January 2009, retail outlets reduced prices for whale meat to levels of the early 1980s, according to the newspaper Asahi Shimbun (Anon. 2009).

d) Toxic whale meat for schools and hospitals

- To further stimulate domestic consumption, a program was started in early 2005 to introduce whale products as “health food” to schools and hospitals (Head 2005; Anon. 2006; Kher 2006). In 2006, about 3,500 schools all over Japan offered whale dishes (Anon. 2006). In January 2008, the Institute of Cetacean Research supplied 10 tonnes of whale meat to 254 Yokohama schools – a total of 200,000 lunches of whale meat – within a two-day public relation campaign (Anon. 2008). During all these decisions the Government was fully aware of the high contamination burden of whale meat from JARPN II: During 2002-2007, the Institute for Cetacean Research in every single year detected PCB levels in minke whale blubber exceeding the Japanese safety limit of 0.5 μg/g (Yasunaga & Fujise 2009b) – with peaks reaching 2.7 μg/g. Nevertheless, the Government did not flinch from distributing this meat to schools: Of the yield resulting from JARPA and JARPN in recent years, portions of up to 26% have been allocated for “public purposes”, including school lunches. In 2004, the volume for public purposes was more than 1,000 tons, which decreased to 900 tons in 2006 (Anon 2007). In 2011, products from Baird’s beaked whales were served to school children on the day of the hunt – later analysis showed the mercury level exceeded safety limits by 3.5 times (Hemmi 2012).

e) “Wall of silence” to local resistance

In 2007, local politicians in the town Taiji initiated laboratory analysis of whale products locally on sale. The samples contained mercury levels up to 16 times above advisory levels (ENS 2007). As a consequence, some schools, which before offered whale products two to three times a month (AFP 2007), took pilot whale from the menu and local supermarkets removed it from their fridge shelves. However, the mayor trivialised the risks, and local media refused to report about the health warnings of Japanese scientists. This might be explained by the local economic role of dolphin meat, which accounts for about US$ 1 million of the town’s annual fishing revenue (Fackler 2008). The two politicians who had initiated and financed the analysis privately, also paid for folders to inform the local citizens about the contamination of cetacean products. Residents bemoaned the “wall of silence” by the authorities (Fackler 2008; ENS 2007).
was the first time local politicians tried to override their government’s belittlement on health risks from whale meat. Instead of taking precautionary measures, the mayor of Taiji is planning to build a new US$ 2.85 million dolphin slaughterhouse and to intensify the school lunch program (AFP 2007).

f) Import of contaminated whale products
In deference to concerns of national consumer health organisations, the Japanese Government for several years refused to import contaminated whale meat from the North Atlantic. In November 2008, however, import permits for shipments of whale products from Norway and Iceland were given for the first time (Black 2008) after a delay of five months after the shipment. This change in policy may reflect the increasing political pressure that the whaling nations want to put on the anti-whaling nations within the IWC.

f) Whaling policy to save the “holy cow”
The obstinate pro-whaling campaign of the Japanese Government has a broader background and seems to be a bulwark for deep-sea fisheries in general (Nanami 2001): Indeed, a representative of the Japanese Fisheries Agency is cited in the media as saying that “if the current ban on hunting whales is allowed to become permanent, activists may direct their efforts to restricting other types of fishing”, e.g. the significant tuna fisheries (Head 2005; Nanami 2001).

So far, the Japanese Government has also been ignoring the risks from Brucella: Those consumers who eat raw whale products do risk an infection with Brucella (CFSPH 2007). Despite the epidemic infection rate in minke whales caught under JARPN (38%; for details see section 2.4), it is astonishing that this whale meat has been processed and packaged for human consumption (Parsons et al. 2006). Symptoms of Brucellosis in humans include fever, headaches, chills, depression, weakness, joint and muscle pain, epididymitis and, in the long-term, hepatic disease, colitis, endocarditis, and meningitis.

3.2. Faroe Islands
The citizens of the Faroe Islands have been hunting small cetaceans for more than a thousand years. Pilot whales are the most commonly targeted species (currently about 1,000 per year), but occasionally also Atlantic white-sided dolphins and northern bottlenose whale are hunted. Whale products are distributed among the 45,000 citizens following a traditional system. Whale and fish together constitute an average of 55% of all dinner meals (Barr et al. 2003), and on average 12 g whale meat and 7 g blubber are consumed per day and adult person (AMAP 2003). Within the last decade, however, alarming scientific findings have raised the question whether this old habit can still be justified. In autumn 2008, the Faroese health authorities recommended to stop consumption of whale products due to the enormous health risks (Weihe & Joensen 2008).

3.2.1. Health implications from whale products at the Faroe Islands
In the 1980s, Prof. Grandjean and Dr. Weihe started a study at the Faroe Islands, collecting blood samples of a birth cohort of more than 1,000 human mother-child pairs. The scientists found very high mercury and PCB levels in maternal hair, with many of them exceeding the critical limit of 10μg/g, where a risk of neurobehavioral dysfunction in the child may occur (Weihe et al. 1996). At the age of seven years the children were tested psychologically and neuropsychologically. The study revealed an impact on reaction time, attention, verbal memory, language and visuospatial function (Grandjean et al. 2003b; Weihe et al. 1996). These results were published in 1997 and led to recommendations by the Faroese public health authorities to pregnant and lactating women, not to consume whale meat and blubber.

A follow-up examination was conducted when the children reached the age of 14 years. It was found that some neurotoxic effects from intrauterine mercury expo-
Toxic Menu — Contamination of Whale Meat and Impact on Consumers’ Health

3.2.2. Governmental response to human health risks

In August 2008, the alarming findings on health risks for consumers of pilot whale meat reached a dramatic peak: The Faroese Chief Medical Officer and Chief Physician in an open letter recommended to their Government “that pilot whale is no longer used for human consumption” (Weihe & Joensen 2008).

Whereas the Government as a consequence has started its internal consultations whether or not to ban pilot whaling, the website of the Prime Minister’s Office in January 2009 still stated “Contaminant loads in pilot whales are an obvious source of concern, but are no reason to stop whaling” (FØroya Landsstýri 2009).

A third cohort study (1998-2000) found that Faroese have a significantly higher risk for Parkinson’s disease, compared to other parts in Denmark and Norway (Wermuth et al. 2008, 2000), which is apparently related to the consumption of pilot whale meat and blubber during adult life (Petersen et al. 2008a, b).

A fourth cohort study (2000-2001) in adult Faroese found that the risk of hypertension and arteriosclerosis is higher in adults, who have an increased mercury exposure. Furthermore, PCB in whale meat is increasing risks for hypoinsulinemia and type 2 diabetes (Weihe & Grandjean 2012 and literature herein).

Mercury levels were primarily related to the frequency of whale meat dinners during pregnancy, while the frequency of fish dinners was of much less importance (Petersen et al. 2008a; Weihe et al. 1996). On average, the daily intake of PCB through whale products and fish has been estimated to be 200 μg (compared to 15-20 μg in Scandinavia), of mercury 36 μg (Weihe et al. 1996). Pilot whales contain predominantly the higher chlorinated PCB forms, which are only slowly metabolised and are therefore especially hazardous (Fängström et al. 2002).

Recent findings indicate that the consumption of only one pilot whale meal every two weeks is enough to increase the concentrations of poly-fluorinated compounds in Faroese 14-year old teenagers by up to 50% (Weihe et al. 2008). Although the impact of PFCs on human health is not yet known, it clearly has an endocrine disrupting effect and the potential to affect male reproduction (Jensen & Brunn Poulsen 2008). For further details see also the website “Children’s health and the Environment in the Faroese” (www.chef-project.dk).

Extract from the open letter of the Faroese Chief Medical Officer and Chief Physician to the Government, dated August 7th 2008:

“...the results have so far shown that mercury from pilot whale meat adversely affects the foetal development of the nervous system:

a) The mercury effect is still detectable during adolescence

b) The mercury from the maternal diet affects the blood pressure of the children

c) The contaminants of the blubber adversely affect the immune system so that children react poorly to immunisations.”

and according to newest studies

d) “contaminants in pilot whales appear to increase the risk of developing Parkinson’s disease in those who often eat pilot whale

e) The risk of hypertension and arteriosclerosis of the carotid arteries is increased in adults, who have an increased exposure to mercury.” …

“...It can therefore be concluded that pilot whales today contain contaminants to a degree that neither meat nor blubber would comply with current limits for acceptable concentrations of toxic contaminants”…
ning to become pregnant was changed to zero for the consumption of whale products. The warning received broad attention and, as a result, consumption of whale products by pregnant women has dropped from 5 g of whale meat and 7 g of blubber in the 1980s to 1 g of whale meat and 0.5 g blubber in 2001 (Weihe 2007). Accordingly, blood samples in 2001 contained only 5% of the mercury level in the 1980s. However, other population groups continued to consume whale products at former levels. With the warning of the health authorities and new alarming findings, this will hopefully change.

3.3. Greenland

In Greenland, both large and small cetaceans are hunted on a large-scale basis: The IWC’s approved quota for aboriginal subsistence hunting is presently 19 fin, 200 minke, and two bowhead whales per year in West Greenland and 12 minke whales in East Greenland (IWC 2009a). Additionally, small cetaceans are hunted. Quotas for beluga and narwhals are set by the Greenland authorities and have recently been reduced: Between the mid 1990s and 2000s, the annual harvest of narwhal in Greenland was 683 and for belugas 507 on average (WWF 2005). The present annual harvest in West Greenland is about 165 belugas and 300 narwhals (NAMMCO 2008a). Both quotas are still significantly higher than recommended as sustainable, which is 100 and 135, respectively (NAMMCO 2008b).

The hunt on small cetaceans has a strong commercial aspect: Narwhal tusks are in high demand in Greenland tourist shops and pieces of raw ivory easily reach 170 Euro per kg; trade in narwhal ivory is increasing (WWF 2005). Tusks and carvings are commercially exported, e.g. to Switzerland, Norway, and the USA (WCMC 2009). Furthermore, beluga meat and “mattak” are both in high demand, with the latter being considered as a delicacy. The products are sold at local markets or to regional buyers like the “Greenland Trade”. A single beluga can bring up to 4,300 Canadian Dollars. In some years the estimated value of mattak (from beluga and, to a lesser extent, from narwhal) alone equaled the commercial value of all trade fish products and seal skins (Sejersen 2001).

3.3.1. Health implications from whale products in Greenland

Within the Arctic, Greenlanders have the highest burden of mercury and of most organochlorines (table 4, Annex). This contamination burden is related mainly to the intake of traditional food such as marine mammals (Johansen et al. 2004; AMAP 2003; INAC 2003a). The daily intake of traditional food, including whale products such as narwhal skin and meat, has decreased during the last 30 years, and along with it the contamination burden (Deutch et al. 2006). However, recent scientific findings give reason for concern that even these lower levels might still be hazardous to human health:

As in the Faroe Islands, also in a traditional Inuit community in Qaanaaq, Greenland, neuropsychological deficits, such as delayed reaction time, were related to maternal mercury exposure. The findings correlated with the frequency of traditional dinners (Weihe et al. 2002). In some regions in Greenland blood mercury concentrations in more than 90% of women of child-bearing age still exceeds guideline levels (AMAP 2011). Other studies found an immune system suppression and an increased risk of infections related to contaminated whale meat (INAC 2003a). Recently, scientists found indications for a connection between Parkinson’s disease and exposure to organochlorines in Inuit from Greenland (Koldkjaer et al. 2003).

Johansen et al. (2004) identified four classes of contaminant levels in traditional food in Greenland: Group 1 (very low concentrations), Group 2 (low to medium), Group 3 (high) and Group 4 (very high concentrations). No whale product was in the lowest contamination group for PCB, CHL, or mercury, but many whale products were in Groups 3 and 4:

- **Mercury**: Group 4 (> 1 μg/g) for liver and kidney of beluga and narwhal; Group 3 (0.1-1.0 μg/g) for muscle and skin of both species, together with minke
whale liver and kidney. Group 2 (0.01-0.09 μg/g) for blubber of all three whale species and minke whale skin. For comparison: Products from terrestrial species, such as caribou or hare, and most marine fish were classified in Groups 1 and 2.

- **PCB**: Blubber of beluga, narwhal and minke whale in Group 4 (> 500 ng/g), minke whale skin in Group 3 (50-500 ng/g), muscle, liver and kidney of all three whales and skin of the two small cetaceans in Group 2 (5-49 ng/g). For comparison: No other animals, not even seals, reached Group 4 for PCB, and all products of terrestrial species were in Group 1.

- **CHL**: Blubber of all three whales was assigned to Group 4 (> 100 ng/g); liver, skin and muscle from the small cetaceans and minke whale liver to Group 3 (10-100 ng/g), and minke whale muscle and kidney to Group 2 (1-9 ng/g). For comparison: Almost all terrestrial species were in Group 1, marine fish (except for halibut liver with very high chlordane concentrations) in 2 and 3.

The results of Johansen et al. (2004) clearly demonstrate that traditional food from terrestrial species and almost all marine fish products are much more suitable for human consumption than whales. Accordingly, they recommend avoiding or minimizing the intake of these extraordinarily contaminated dishes. This recommendation has not been implemented.

### 3.3.2. Governmental response to human health risks
Despite the contamination level of whale products the Greenlandic authorities argue that the positive health and social aspects of traditional food would “far outweigh any negative health effects of pollutants” (AMAP 1997). Still the health authorities undifferentiated encourage the consumption of traditional foods for nutritional and cultural reasons (AMAP 2003). Currently, the position of the authorities is gradually changing: In 2004, the National Environmental Research Institute (NERI) of the Danish Ministry of Environment published a report on “contaminants in traditional Greenland diet” (Johansen et al. 2004), in which is stated: “A way to minimize contaminant intake would be to avoid or limit the consumption of diet items with high contaminant levels.” The report identifies – apart from seals – beluga and narwhal (liver, kidney and blubber) and minke whale (blubber and mattak) as the most important contaminant sources (see section 3.4.). However, until today the authorities have failed to draw adequate consequences by reducing or banning the whale hunts. They have also failed to explicitly brief consumers in Greenland to avoid eating whale products and to choose other traditional food.

### 3.4. Norway and Iceland

#### Norway

Norway holds a reservation against the moratorium. In 1993, the commercial hunt was resumed, with increasing self-set quotas. By late 2008, more than 8,600 minke whales were killed for commercial purposes (IWC 2009c). No other species are taken. For current quotas see 3.4.2.1.

#### Iceland’s

Whaling activities since the moratorium can be divided in two phases: From 1986 to 1989, a total of 292 fin and 70 sei whales was killed under “scientific whaling”. After a 14-year break, Iceland resumed whaling in 2003. From 2003 to 2007, 200 minke whales were again killed using the loophole of “scientific whaling”, while in 2006/2007 both seven fin and minke whales were caught under reservation (IWC 2009b,c). In January 2009, the Fisheries Minister, as his last activity before his retirement, authorised an annual quota for 2009-2013 of 150 fin and 100 minke whales. Although the new government might cancel the quota for 2010-2013, the quota for 2009 is valid.

#### 3.4.1. Health implications from whale products in Norway and Iceland

#### 3.4.1.1. Norway

In Norway, whale meat is not a daily food, but only consumed occasionally. For whale blubber, in which much
higher levels of toxic substances are accumulated, there is no domestic market, and therefore it is stored for possible exports to Japan. Despite a high fish consumption rate in Norway, the levels of PCBs, DDT, and CHL in breast milk are generally very low (AMAP 1997). In May 2003, Norwegian scientists advised pregnant and nursing women not to consume whale meat (Reuters 2003) due to new findings regarding mercury and PCB:

- In minke whale meat from the whaling season 2002, mercury levels of up to 0.80μg/g were found in muscle (Grønvik 2003). Contamination was lowest in whales hunted in the Barents Sea (mean 0.14 μg/g), followed by Spitsbergen (mean 0.25 μg/g) and North Sea (mean 0.28 μg/g), and the highest levels in Jan Mayen (mean 0.34 μg/g). Grønvik also reports that animals caught later in the season showed higher toxic levels.

- According to Hobbs et al. (2003) minke whale blubber from the Barents Sea (up to 11.8 μg/g lw) and the North Sea (up to 14.8 μg/g) had significantly higher concentrations of ΣPCBs than those of the Vestfjorden/Lofoten (up to 8.07 μg/g), and West Svalbard (up to 5.25 μg/g).

- ΣDDT concentrations in blubber from minke whales hunted in Norway (up to 7.77 μg/g lw) were significantly higher compared to animals from West Greenland (up to 3.34 μg/g) and East Greenland (up to 0.68 μg/g).

### 3.4.1.2. Iceland

The Icelanders’ diet heavily relies on marine fish; however, the consumption of whale products is much lower than in Greenland and the Faroe Islands. The only traditional dish with whale meat is “sour whale”, which is occasionally offered at social events (Altherr 2003). In recent years, some upscale restaurants have tried to establish whale dishes on their menu, e.g. as whale sashimi or whale burger with lobster mayonnaise. Furthermore, it was tried to establish whale meat as school lunch (Michaels 2008).

Circumpolar studies have shown that levels of heavy metals and POPs in Icelandic people is marginally higher than in Swedish or Norwegian people and significantly less than in Greenlandic people, where consumption of whale products is much higher (AMAP 2003, 1997). Presently, in Iceland, the consumption of whale products has been (and is still) very low, and therefore so far no health impacts for the population are anticipated – if dietary habits do not change.

### 3.4.2. Governmental response to human health risks

#### 3.4.2.1. Norway

Norway resumed commercial whaling in 1993 and since then expanded these activities. Although scientists reported alarming concentrations of POPs in blubber of minke whales hunted in Norway (Grønvik 2003; Hobbs et al. 2003; Kleivane & Skaare 1998), the Government continued to expand catch quotas and to subsidise whaling, processing and storage of whale products. Furthermore, it promotes the consumption of whale meat. It also aims to export whale blubber to Japan, although even Norwegian officials from the Food Control Authority cautioned particularly against the high PCB levels in the blubber (Hobbs et al. 2003; Farden 2001).

Several attempts have been made to increase the domestic consumption of whale meat: The government stated that whale meat “tastes delicious and is very healthy. Recent research indicates that the oil in whale meat and blubber contains substances which have a pre-
ventive effect on cardiovascular diseases, among others” (Ministry of Fisheries et al. 2000). Recipes for whale dishes are promoted by e.g. the High North Alliance, a pro-whaling organisation closely cooperating with the Norwegian Government. Whale meat is sold in supermarkets, at markets and sometimes offered at whale watching tours.

In 2006, the Norwegian Government established its new calculations for “sustainable quotas” (which are not approved by the IWC) and increased its annual quota to 1,052. Since then, however, the number of landed whales has remained significantly behind the new quota and remained at a similar level to the former annual harvest of 600-700 animals. Officially, Norway explains this discrepancy with bad weather conditions, but the low domestic demand for whale products and the so far very limited export options to Japan probably also play a role. Whatever the real reasons are, in 2009 the quota was reduced to 885 specimens.

3.4.2.2. Iceland
The Icelandic Government, while preparing its resumption of whaling in the early 2000s, tried to increase the domestic consumption of whale products by launching a media campaign: Cooking recipes were published, Icelandic politicians ate whale meat in front of the media, and in the press it was claimed that whale meat would be especially “healthy” (Altherr 2003 and references herein). Such promotion was done although the Icelandic Government should have been fully aware of the alarming findings of Norwegian scientists on PCB and DDT contamination in North Atlantic minke whales (see table 4, annex).

The Icelandic government, under pressure from whaling lobbyists, is still trying to revive a taste for whale among young people and hence supports whale meat as school lunches (Michals 2008). On the other hand, in October 2003, the Environment Agency of Iceland recommended for pregnant and nursing women to consume minke whale meat “not more than twice a week”. A health risk for consumers is considered to be low as the “principle food source [of Icelandic minke whales] is believed to be krill”. As a conclusion it is said that “concentrations of contaminants should thus not be high in the minke whale as it is quite low in the food chain”. This position reveals an inconsistency of the Icelandic whaling policy: On one hand it is argued that whaling is needed to conserve commercial fish stocks that would be depleted by whales, on the other hand it is stated that whale meat is healthy because their low trophic status means contaminant levels are low.

3.5. Other regions: Canada, Alaska & Russia

Canada: Only occasionally, Canadian Inuit hunt bowhead whales, with a total of eight animals killed within the period 1985-2008 (Blatchford 2008; IWC 2009a). However, small cetaceans are hunted in large numbers: In 1999, a former quota system for narwhals was replaced by a community-based management. On average, 372 specimens are annually landed in Nunavut (COSEWIC 2004). In December 2008, the hunters from the community of Pond Inlet, Nunavut, killed the exceptionally high number of about 560 narwhals (SIKU News 2008). Narwhals are hunted for their skin, which is regionally sold as maqtaq or muktuk, and for the males’ ivory tusks (COSEWIC 2004). The hunt has a strong economic aspect, with the tusks being sold as a whole or as carvings. Depending on quality and length, tusks can achieve prices of up to 7,500 US Dollars (Chichester undated). Tusks are regularly exported to Japan, Switzerland, and before the 1990s many went also to Great Britain (WCMC 2009). The quota for the beluga hunt in Nunavik has been reduced during recent years from 360 (2002), to 135 (in 2006) and 121 (in 2007). However, these quotas were ignored in 2006 and 2007 (SIKU News 2007a,b). In Nunavut, there is currently no management of these whales (Tyrrell 2007), and the annual hunt is presently still more than 300 belugas (FOC 2007).

Alaska: From 1985 to 2007, a total of 1,070 bowhead,
nine gray and two minke whales were killed under Aboriginal Subsistence Whaling (IWC 2009a).

Russia: Since the moratorium up until 2007, a total of 2,646 gray whales, 13 bowhead and three minke whales were killed under Aboriginal Subsistence Whaling (IWC 2009a). In Russia, similar to the situation in Greenland, both large and small cetaceans are hunted by native people in Chukotka. In accordance with an IWC-approved quota for aboriginal subsistence whaling, 110-130 gray whales and up to three bowhead whales are annually hunted by Russia (IWC 2009).

3.5.1. Health implications from whale products in Alaska, Canada & Russia

3.5.1.1. Canada

People from northern Canada are among the groups most heavily exposed to PCB, DDT, chlordane and mercury compared to other northern regions. The burden varies in the different territories and is highest among Inuit from the eastern Northwest Territories and Nunavik, and Baffin Island (AMAP 2003). Contamination levels correlate with the dietary preferences in these regions on marine mammals and fatty sea fish (AMAP 2003, 1997). In the Baffin region, for example, marine mammals represent up to 28% of the total energy intake (AMAP 2003).

“Muktuk”, the skin of belugas and narwhals, is considered to be a delicacy among native Canadian people and belongs to the top five traditional foods most often consumed, e.g. in Baffin (INAC 2003a). 36.1% of men and 32% of women consumed marine mammal kidney and liver at least once a year (Fontaine et al. 2008). The consumption of whale products poses risks to human health:

- Virtually all samples of beluga whales hunted 1981-2002 in the Canadian Arctic contained mercury levels in liver higher than the Canadian consumption guideline for fish, i.e. 0.5 μg/g wet weight (see table 1, Annex). Even more alarming is that mercury levels have clearly increased over the sampling period (Lockhardt et al. 2005). The consumption guidelines were also exceeded for muktuk from narwhal (Wagemann & Kozlowska 2005).
- In Nunavut, mercury levels in some communities (e.g. Igloolik and Repulse Bay) partially exceed the Health Canada level of minimal concern. A significant correlation between mercury exposure and traditional food intake was verified in the two communities (INAC 2007).
- Mercury and PCB levels in humans were similar to those found in the Faroe Islands (Muckle et al. 2001b). Mercury concentration was higher in blood of Inuit from the Hudson Bay, where significantly more marine mammals are consumed, compared to Ungava Bay (Fontaine et al. 2008).
- Levels of Chlordane-metabolites in Inuit maternal/cord blood are 6-12 times higher than in mothers of other ethnic background (Butler Walker et al. 2006; INAC 2003a). Inuit mothers from Baffin region showed the highest HCL levels (0.58 μg/l on average, with maxima of 2.4 μg/l), followed by Kivalliq (0.36 μg/l), Nunavik (0.30 μg/l) and Kitikmeot (0.29 μg/l). Similar patterns have also been found for other contaminants.
- 73% of the Inuit mothers from Baffin region, 59% from both Kivalliq and Nunavik, and 41% from Kitikmeot (Nunavut) showed PCB blood levels that exceed the Health Canada level of concern of 5 μg/l (INAC 2003a).
- Results from a Nunavik cohort study indicate subtle health impact in infants at 11 months of age. Prenatal exposure to PCB had effects on birth weight, duration of pregnancy and visual memory. Prenatal exposure to mercury reduced the infants’ memory ability (INAC 2003a).
- According to studies in the Northwest Territories, Nunavut and Nunavik the maternal blood of Inuit women (especially from Baffin and Nunavik) contains significantly higher mercury concentrations than other northern women. Levels were highest in Nunavik (10.4 μg/l), followed by Baffin (6.7 μg/l), Kivalliq (3.7 μg/l), Kitikmeot (3.4 μg/l) and Inuvik (2.1 μg/l) – whereas in Caucasian women, mercury content was only 0.9 μg/l (INAC 2003a).
- In Nunavut, 59% of pre-school children have mercury-intakes that exceed acceptable safety limits for children (AMAP 2011).
- Studies of infant development in Nunavik have linked deficits in immune function, an increase in childhood respiratory infections and an impact on birth weight with prenatal exposure to organic chlorines (Van Oostdam et al. 2005).
A broad-scale health survey in 2004 showed a 32% decrease of mercury concentration compared to another study in 1992. This decrease was attributed by dietary changes: The mean intake of marine mammals had been reduced from 28.7 to 17.5 g/day – a decrease of 40% (Fontaine et al. 2008).

Despite widespread knowledge about the burden of mercury and PCBs in traditional food, many Inuit women in Nunavik increase their consumption of marine mammals during pregnancy – partially because of the belief that this food would be beneficial during pregnancy (Muckle et al. 2001a). The most frequently consumed marine mammal food is beluga blubber and muktuk, followed by seal meat, fat, and liver and beluga meat. The consumption of these food items is still recommended in local media by Inuit midwives. However, a change is on the horizon as younger Inuit pregnant women consume less beluga products (Muckle et al. 2001a).

In belugas and narwhals from Nunavut, Nunavik and Hudson Bay, Brucella infections have been detected, with an epidemic infection of up to 35.7% (Nielsen et al. 2001). As in Inuit diet whale products are often consumed raw, and the pathogen is still infective. However, data on related health risks for humans are not available.

### 3.5.1.2. Alaska

Considering the contamination level of blubber and liver of bowhead whales (table 2, Annex) and the recommended safe limits for daily intake, O’Hara et al. (1999) concluded a **restrictive daily intake of maximally 47 g of blubber to be safe for the Inuit diet.** This low amount is due to the comparatively high levels of chlordane, while for other toxic substances the daily intake could be higher. In contrast, mercury levels in bowhead whales from Alaska are considered to be low and of no concern (O’Hara et al. 2004).

According to the US EPA’s monthly fish consumption limits for methylmercury, products with more than 1.9 μg/g methylmercury should not be consumed at all (UNEP 2002). Accordingly, some gray whale products from Alaskan hunts should not be consumed, having mercury levels in kidney and liver of 2.3 and 4.4 μg/g, respectively (Varanasi et al. 1993; see table 2, Annex).

### 3.5.1.3. Russia

Gray whales in the Russian subsistence hunt in the Bering Sea have **such high chlordane levels in blubber that a restrictive consumption rate of maximally 23 g/day was recommended.** PCB concentrations in blubber reach up to 0.68 and DDT up to 0.54 μg/g ww (Rowles & Ilyashenko 2007; Krahn et al. 2000). Unfortunately, from the Chuckchi region no recent contamination data for mercury, PCB, DDT and chlordane in human blood are available.

Up to 10% of the gray whales killed in aboriginal whaling in Chukotka are so-called “stinky whales”, a phenomenon involving inedible whales with still unclear cause. Environmental pollution is being discussed as one potential explanation. Aboriginals have reported about the problem since 1998, but older hunters apparently recognized the problem 30 years earlier. Consumption of the meat can cause temporary problems like oral numbness, skin rashes, and/or stomach pain (Rowles & Ilyashenko 2007). There is some concern that a yet unidentified bio-toxin might be involved and therefore toxicologists warn not to consume the meat of stinky whales (Ilyashenko 2007).

### 3.5.2. Governmental response to human health risks

#### 3.5.2.1. Canada

Already in 1985, as a reaction to several alarming scientific publications, the Canadian authorities established a working group on contaminants in native diets. High levels of toxins, such as chlordane, DDT, PCB and mer-
cury, were found in marine mammals, including narwhal and beluga (INAC 1989). Nevertheless, so far no regulatory guideline for contaminants in marine mammals were defined, but only in fish, i.e. 0.5 μg/g wet weight (Lockhardt et al. 2005).

In 1991, the Canadian government launched the Northern Contaminants Program (NCP), which continues to date (INAC 2007, 2003; AMAP 1997). Between 1991 and 1996, the NCP focused on assessing contaminants and at which levels and where they were found. From 1998 to 2003, the focus shifted to health risk aspects (INAC 2007). Several detailed reports were published by the Canadian government since then (e.g. INAC 2003a, 2003b).

The Canadian government is well aware of the “large and complex public, moral and political dilemma what to recommend” (INAC 2003a). Almost all beluga samples in Canadian Arctic hunts contained contaminants above the government’s guidelines (Lockhardt et al. 2005). Since the mid-1990s, women of reproductive age were told to consume less beluga whale and other contaminated traditional food (AMAP 1997). For other consumer groups, the government’s recommendation is still to continue eating traditional food. And this position is hold until today: In 2011, new results of a cohort study involving 300 children from all 14 Nunavik communities were published. The study associated mercury exposure from beluga meat consumption with “poor intellectual function and attention in school”. However, the resulting advise was still just to “decrease their intake of beluga meat” (Nunavik Regional Board of Health and Social Services (2011).

The Indian and Northern Affairs Canada (INAC, undated) stresses that “meat, kidney and liver have less PCBs and pesticides than blubber”, but ignores the fact that beluga liver, followed by kidney and muscle, contains the highest mercury levels (Lockhardt et al. 2005), clearly above its own guidelines. The Government instead argues that “eating [of beluga] helps keep people connected with the land and their cultures” and that “hunting for belugas helps keep people fit and healthy” (INAC undated). This position shows that socio-political aspects are ranked higher than health concerns – a policy that increasingly becomes negligent considering the available scientific data.

Despite the known risks for Inuit consuming cetacean products, the government’s website states: “Health Canada has determined that Canadians are not exposed to PCBs in foods at levels that pose a health risk and that there is no need for specific advice regarding fish consumption and PCB exposure” (Health Canada 2002).

The pathogen Brucella (for details see 2.4) has been found in several Arctic cetacean species, including beluga and narwhal (Nielsen et al. 2001). Also other viral and bacterial pathogens were detected, including herpes and influenza A. In Inuit diet, whale meat is mostly consumed raw, yet it undergoes no formal governmental inspection or certification (Nielsen et al. 2004). Accordingly, there is an increasing concern about Brucella infection risks for consumers.

3.5.2.2. Alaska
Since 1999, the hunting quota for beluga in Alaska has been set to a maximum of two individuals per year for conservation reasons (US NMFS 2008).

3.5.2.3. Russia
At the IWC, Russia is encouraging discussions to find a solution for the “stinky whale” problem. However, no information is available on government advice regarding the consumption of whale products.
4. Health concerns on the IWC Agenda

The IWC’s involvement in the issue of contamination in cetaceans started in 1981, when a resolution was passed noting the potential threats to whales (particularly sperm whales) caused by heavy metals, PCBs and other organochlorines (Res. 1981-App.7). This resolution called upon governments to start research on this matter and the subject remained on the agenda. In 1985, a working group was established to consider, inter alia, chemical pollution. However, these efforts showed little concrete results and did not consider human health aspects. Only in the late 1990s and early 2000s, scientific publications (such as Simmonds et al. 2000; Haraguchi et al. 2000; Kleivane & Skaare 1998) and several reports from NGOs (Hassauer et al. 2002; Hanly 1997) brought the issue into the focus of the IWC parties. A legal analysis by Prof. Wold (2000) underlined the competence of the IWC for the human health aspect, as some IWC parties had previously stated that this would be beyond the IWC’s competence. All these findings, combined with a range of other environmental concerns, led to the establishment of regular “State of the Cetacean Environment Reports” (SOCER) starting in 2000. This situation also led to several resolutions recognising the health risks from consumption of contaminated whale products:

- **IWC-Res. 1998-11** ("IWC concern about human health effects from the consumption of cetaceans") invites governments to provide relevant information.
- **IWC-Res. 1999-4** on health effects from the consumption of cetaceans calls on the producing countries to take measures to reduce the pollution and to governments and other organisations to further provide data concerning contaminations in cetaceans to the Scientific Committee.
- **IWC-Res. 2000-6** on POPs and heavy metals urges IWC parties to sign and ratify two protocols on international actions on POPs and heavy metals under the **Convention on Long Range Transboundary Air Pollution (LRTAP)**.
- **IWC-Res. 2001-5** on commercial whaling expresses the IWC’s concern on the reportedly high levels of contaminants in blubber from minke whales hunted in Norway. The resolution also requests that the Norwegian government refrain from issuing export permits for whale products.
- **IWC-Res. 2001-13** on small cetaceans recalls the recommendations of the Scientific Committee that range states continue studies to, inter alia, conduct contamination analysis and health assessments and provide relevant scientific data to the SC.

Since then, the IWC’s attention was occupied by the controversial debates on the **Revised Management Scheme (RMS)** and the development of potential compromises between whaling and non-whaling nations. The increasingly crucial discussion on human health aspects fell behind, but should urgently be resumed.
5. Recommendations

5.1. Recommendations to the IWC

In the 1990s and early 2000s, the IWC has been increasingly engaged in the issue of health risks for both cetaceans and human consumers due to toxic substances. Since the mid-2000s, however, this important agenda item was neglected while the further development of the RMS and the increasing abuse of ICRW loopholes by some whaling nations came into the focus of the debates. Nonetheless, the recent scientific findings and alarming developments regarding health risks from consumption of whale meat call for a resumption of this vital discussion. In the recent past, some whaling nations have been preparing the expansion of their activities despite the health risks for the consumers in their own countries.

For example, in Japan, a large-scale distribution of cetacean products to lunchrooms of schools and hospitals has been launched to reduce rising stock piles of whale products (see 3.1.2.). These stockpiles resulted from the politically-motivated expansion of the Japanese Whale Research Program under Special Permit in the Antarctic (JARPA) and Japanese Whale Research Program under Special Permit in the western North Pacific (JARPN).

Despite international criticism of the unsustainable hunting of small cetaceans, Greenland is sticking to the present quotas and is apparently trying to use small cetaceans as a subject for negotiations to achieve increased quotas for humpback whales. This tactic was evident at IWC 59 and 60. Accordingly, the IWC Parties should carefully analyse proposals by Greenland for an expansion of quota and should insist on detailed information on the real demand of aboriginal people.

Iceland and Norway are attempting to artificially stimulate the low national consumption of whale products by advertisements, distribution of cooking recipes or image campaigns that whale products would be a healthy and stylish food. The IWC Parties should call on these countries to halt their whaling activities.

All these politically motivated measures ignore the potential health impact on people. Whale products, especially in contaminated waters and from high trophic species, are definitely a health risk for consumers. There are healthier alternatives – not only in remote Arctic areas, but even more in industrial nations.

The IWC Parties should pass Resolution IWC/64/13, which highlights the scientific warnings and calls on whaling nations to responsibly inform consumers about associated health risks.

The IWC as the leading body to manage whales and to regulate whaling can no longer sit on the fence and ignore the alarm calls of scientists worldwide. The IWC should therefore intensify its considerations regarding the exposure of cetaceans to toxic substances and the potential health risks for consumers.

The IWC is urged to cooperate in this issue with the WHO. Furthermore, whaling nations should be encouraged to develop dietary alternatives and to critically reflect on whether their whaling interests are still legitimate.

5.2. Recommendations to consumer protection organisations

For centuries Arctic people had heavily relied on whale products and other marine food. Since the alarming facts about contaminant levels have become widely known, the difficult balance between benefits and risk has become the “Arctic dilemma”. However, even in remote areas it is possible to compose a diet in which the benefits outweigh the risks, i.e. by reducing the most contaminated food items, such as whale products, and preferring less risky food, such as from terrestrial animals and plants (Deutch et al. 2006; Johansen et al. 2004).

In May 2007, the International Conference on Foetal Programming and Developmental Toxicity was held in Tórshavn, Faroe Island – a place that has become symbolic for this issue due to the long-term studies by the Faroese health authorities and their alarming findings (see section 3.3). In a joint statement the conference participants emphasized that prevention of harm is the central challenge, especially when taking into account the "susceptibility of early development and the long-term implications of adverse programming in a variety of organ systems", including brain and nervous, immune and car-
diac systems. A variety of substances that are hardly toxic in adult organisms are nevertheless hazardous to the growing foetus (Grandjean et al. 2007). As a consequence of the ongoing alarming findings in the Faroe Islands, the health authorities there called on their government in August 2008 that pilot whale meat should no longer be consumed at all – even though without success. In other geographic regions, however, whale products are similarly contaminated and consumption should also be stopped, especially in regions where nutritional alternatives are sufficiently available.

Almost without exception, organochlorine levels are lower in the terrestrial environment than the marine environment due to higher trophic levels and the higher fat content in marine mammals and large fish (AMAP 2003). Accordingly, for native people in Arctic regions that heavily rely on traditional foods, a reduction of marine mammals in their diet is urgently recommended, while an increased consumption of terrestrial traditional food would reduce the risk of contamination.

For citizens in other regions, e.g. the western North Pacific, for whom sufficient dietary alternatives are available, the consumption of whale products should be generally put into question.

Japan: Consumer protection organisations in Japan should call on their government to immediately halt the distribution of cetacean products to schools and hospitals. Due to the high contamination levels that have been found in whale products on Japanese markets, it is highly irresponsible to feed the weakest and most fragile members of their society with such items. As a second step, the public in Japan should receive advice to not consume whale products as the toxic burden might seriously impact their health.

Denmark: Consumer protection organisations should launch awareness campaigns in Greenland while cooperating with representatives of the native people there. The results of Johansen et al. (2004) clearly underline the high contamination burden of marine mammals eaten in Greenland, compared to terrestrial traditional food and most fish species. Traditional food as a whole need not be questioned, but an effort should be made to clearly discriminate the different risk potentials of the different traditional foods and to encourage native people to rely on food components that are less contaminated. In the Faroe Islands, the responsible authorities should be urged to draw their consequences from the warnings of their own health authorities and to stop the hunting of pilot whales and other small cetaceans.

Canada: The results of Johansen et al. (2004) from Greenland are transferable to the situation of Canadian Inuit. Their findings clearly underline the high contamination burden of marine mammals compared to terrestrial traditional food and most fish species. As a consequence, native people should be encouraged by Canadian consumer protection organisations to critically scrutinize their current dietary habits and to reduce the consumption of marine mammals in favour of less contaminated fish and terrestrial food sources.

USA: Consumer protection organisations should cooperate with representatives of the native people and launch awareness campaigns in Alaska. The results of Johansen et al. (2004) from Greenland are transferable to the situation of Alaska’s Inuit. Accordingly, whalers should be encouraged to critically scrutinize their current dietary habits and to reduce the consumption of marine mammals in favour of fish and terrestrial food sources.

5.3. Recommendations to the WHO
The World Health Organisation is the central body for health risk assessments and corresponding advice for consumers. In response to the recent scientific findings on toxic burden of cetacean products the WHO should:

- establish a commission, which should conduct in depth reviews and give precautionary and updated WHO advice for consumers. This pertains especially to the recent findings for mercury, PCB, DDT and Chlordane, but also to the so far hardly considered components such as PBDEs, short-chained chlorinated paraffins and fluorinated compounds;
- call on whaling nations to inform their citizens on the risks of cetacean products;
- closely cooperate with the IWC on this issue;
- make relevant scientific publications on health risks from cetacean products available on its website.
References


Aono, S. et al. (1997): Persistent organochlorines in minke whales (Balaenoptera acutorostrata) and their prey species from the Antarctic and the North Pacific. Environmental Pollution 98: 81-89.


Farden, K. (2001): cited in the BBC article of 24th January “Japan warned on contaminated blubber”.

Fischer, C. et al. (2008): Neonatal co-exposure to low doses of an ortho-PCB (PCB 153) and methyl mercury exacerbate defective developmental neurobehaviour in mice. Toxicology 244:


Nuovak Regional Board of Health and Social Services (2011): http://www.youtube.com/watch?v=1Q4tlmMu84Y


O’Hara, T. et al. (1998): Heavy Metal, Radionuclide and Organochlorine Contaminant Levels in Eskimo Harvested Bowhead Whales of Arctic Alaska with a Review of Contaminant Levels and Effects in Arctic Ecosystems. IWC SC/50/ES.


Parsons, E. et al. (2006): It’s not just poor science – Japan’s “scientific” whaling may be a human risk, too. Mar Pollut Bull 52: 1118-1120.


Wagemann, R. & Kozlowska, H. (2005): Mercury distribution in

Emerging Infectious Diseases 9(4): 485-488.


Wold, C. (2000): Legal opinion on the competence of IWC to include humane treatment and human and cetacean health concerns in the RMS. Presented at IWC 52, Adelaide, Australia.


Table 1: Contamination levels in toothed whales

lw = lipid weight; ww = wet weight; dw = dry weight; * mixed samples of three different dolphin species. Values in bold exceed particular national health advice (see table 4). For the Faroe Islands and Greenland, belonging to Denmark, the EU safety limits are taken as a basis.

<table>
<thead>
<tr>
<th>Whale species</th>
<th>Region</th>
<th>Pollutant</th>
<th>Tissue</th>
<th>Concentration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sperm whale</strong> <em>(Physeter catodon)</em></td>
<td>Iceland</td>
<td>PCB</td>
<td>Blubber</td>
<td>10.51 μg/g lw</td>
<td>Borrell 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td></td>
<td>7.8 μg/g lw</td>
<td></td>
</tr>
<tr>
<td>Japanese, western North Pacific</td>
<td>Mercury</td>
<td></td>
<td>Liver</td>
<td>≤ 130 μg/g ww</td>
<td>Yasunaga &amp; Fujise 2009c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>≤ 4.2 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle</td>
<td>≤ 2.1 μg/g ww</td>
<td></td>
</tr>
<tr>
<td><strong>Caribbean</strong></td>
<td>PCB</td>
<td></td>
<td>Blubber</td>
<td>0.7-4.0 μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td></td>
<td></td>
<td>≤15.3 μg/g ww</td>
<td></td>
</tr>
<tr>
<td><strong>Beluga</strong> <em>(Delphinapterus leucas)</em></td>
<td>Canada, Western Arctic</td>
<td>Mercury</td>
<td>Muktuk</td>
<td>0.84 μg/g ww</td>
<td>Wagemann &amp; Kozlowska 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blubber</td>
<td>0.12 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle</td>
<td>1.4 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver</td>
<td>≤464 μg/g dw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Lawrence</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤45 μg/g ww</td>
<td>AMAP 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mackenzie Delta, NW Territories</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤44.3 μg/g ww</td>
<td>Lockhart et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>≤9.43 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle</td>
<td>≤1.95 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muktuk</td>
<td>≤1.15 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hendrikson Island, NW Territories</td>
<td>PCB,</td>
<td>Blubber</td>
<td>≤5.73 μg/g ww</td>
<td>Stern et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT, CHL</td>
<td></td>
<td>≤5.77 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤3.03 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nunavut</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤13.8 μg/g dw</td>
<td>INAC 2003b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Blubber</td>
<td>&lt;9.17 μg/g ww</td>
<td>Stern et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td></td>
<td>≤7.3 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td></td>
<td>≤5.97 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baffin Island</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤11.4 μg/g ww</td>
<td>Lockhart et al. 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Kidney</td>
<td>4.64 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>Muscle</td>
<td>≤0.98 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td>Blubber</td>
<td>≤4.95 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Hudson Bay</td>
<td>PCB</td>
<td>Blubber</td>
<td></td>
<td>INAC 2003b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td></td>
<td>≤3.1 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td></td>
<td>≤2.9 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤1.1 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alaska, Cook Inlet</td>
<td>PCB</td>
<td>Blubber</td>
<td>≤6.9 μg/g ww</td>
<td>Krahn et al. 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td></td>
<td>≤4.9 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td></td>
<td>≤3.3 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eastern Chukchi</td>
<td>PCB</td>
<td>Blubber</td>
<td>≤2.6 μg/g ww</td>
<td>Krahn et al. 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td></td>
<td>≤1.33 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td></td>
<td>≤1.53 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenland</td>
<td>Mercury</td>
<td>Liver</td>
<td>4.04 μg/g ww</td>
<td>Johansen et al. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>0.58 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.78 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Liver</td>
<td></td>
<td>0.06 μg/g ww</td>
<td>Johansen et al. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muscle</td>
<td></td>
<td>0.06 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidney</td>
<td></td>
<td>0.08 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blubber</td>
<td></td>
<td>2.45 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin</td>
<td></td>
<td>0.09 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td>Meat</td>
<td></td>
<td>0.03 μg/g ww</td>
<td>Johansen et al. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver</td>
<td></td>
<td>0.02 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidney</td>
<td></td>
<td>0.04 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blubber</td>
<td></td>
<td>1.56 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin</td>
<td></td>
<td>0.06 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHL</td>
<td>Meat</td>
<td></td>
<td>0.02 μg/g ww</td>
<td>Johansen et al. 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver</td>
<td></td>
<td>0.02 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidney</td>
<td></td>
<td>0.02 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blubber</td>
<td></td>
<td>1.20 μg/g ww</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin</td>
<td></td>
<td>0.05 μg/g ww</td>
<td></td>
</tr>
<tr>
<td>Narwhal (Monodon monoceros)</td>
<td>Canada, Eastern Arctic</td>
<td>Mercury</td>
<td>Skin (muktuk)</td>
<td>Blubber</td>
<td>Muscle</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Broughton Island, E. Baffin Island, NWT</td>
<td>PCB</td>
<td>DDT</td>
<td>CHL</td>
<td>Blubber</td>
</tr>
<tr>
<td></td>
<td>Pond Inlet, NE Baffin Island, NWT,</td>
<td>PCB</td>
<td>DDT</td>
<td>CHL</td>
<td>Blubber</td>
</tr>
<tr>
<td></td>
<td>Jones Sound, Nunavut</td>
<td>PCB</td>
<td>DDT</td>
<td>CHL</td>
<td>Blubber</td>
</tr>
<tr>
<td>West Greenland</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤ 16.3 μg/g lw</td>
<td>≤ 73.3 μg/g ww</td>
<td>SOCE 2005</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Muscle</td>
<td>Blubber</td>
<td>2.31 μg/g ww</td>
<td>0.05 μg/g ww</td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td>Muscle</td>
<td>Liver</td>
<td>1.62 μg/g ww</td>
<td>0.04 μg/g ww</td>
</tr>
<tr>
<td></td>
<td>CHL</td>
<td>Muscle</td>
<td>Liver</td>
<td>0.03 μg/g ww</td>
<td>0.04 μg/g ww</td>
</tr>
<tr>
<td>East Greenland</td>
<td>PCB</td>
<td>Muscle</td>
<td>Skin</td>
<td>0.10 μg/g ww</td>
<td>0.17 μg/g ww</td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td>Muscle</td>
<td>Skin</td>
<td>0.10 μg/g ww</td>
<td>0.17 μg/g ww</td>
</tr>
<tr>
<td>Long-finned pilot whale (Globicephala melas)</td>
<td>Faroe Islands</td>
<td>Mercury</td>
<td>Muscle</td>
<td>Liver</td>
<td>Blubber</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Muscle</td>
<td>Blubber</td>
<td>0.6 μg/g ww</td>
<td>30 μg/g ww</td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td>Blubber</td>
<td>Muscle</td>
<td>≤ 16.5 μg/g lw</td>
<td>0.3 μg/g ww</td>
</tr>
<tr>
<td>Short-finned pilot whale (Globicephala macrocephalus)</td>
<td>Japan, coastal waters</td>
<td>Mercury</td>
<td>Muscle</td>
<td>Liver</td>
<td>Lung</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>DDT</td>
<td>Lung</td>
<td>Blubber</td>
<td>0.6 μg/g ww</td>
</tr>
<tr>
<td></td>
<td>Atlantic white-sided dolphin</td>
<td>Faroe Islands</td>
<td>PCB</td>
<td>DDT</td>
<td>Blubber</td>
</tr>
<tr>
<td>Striped dolphin (Stenella coerulea)</td>
<td>Japan, coastal waters</td>
<td>Mercury</td>
<td>Liver</td>
<td>Muscle</td>
<td>Kidney</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Blubber</td>
<td>“Whale”</td>
<td>5.0 μg/g ww</td>
<td>1.5 μg/g ww</td>
</tr>
<tr>
<td></td>
<td>DDT</td>
<td>Blubber</td>
<td>≤ 17.1 μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
<td>EIA 2005</td>
</tr>
<tr>
<td>Riss opportunities, Gingo (Grampus griseus)</td>
<td>Japan, coastal waters</td>
<td>Mercury</td>
<td>Muscle</td>
<td>Liver</td>
<td>Kidney</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Muscle</td>
<td>Muscle</td>
<td>≤ 98.9 μg/g ww</td>
<td>Endo et al. 2005a</td>
</tr>
<tr>
<td>Bottlenose dolphin (Tursiops truncatus)</td>
<td>Japan, coastal waters</td>
<td>Mercury</td>
<td>Muscle</td>
<td>≤ 6.46 μg/g ww</td>
<td>Endo et al. 2005a, 2003</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Boiled meat</td>
<td>Blubber</td>
<td>≤ 2.63 μg/g ww</td>
<td>≤ 1.9 μg/g ww</td>
</tr>
<tr>
<td>Whale species</td>
<td>Region</td>
<td>Pollutant</td>
<td>Tissue</td>
<td>Concentration</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Dall's porpoise (Phocoenoides dalli)</td>
<td>Japan, NW Pacific</td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 5.77 μg/g sideww</td>
<td>Kleivane &amp; Skaare (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ 1.72 μg/g sideww</td>
<td>SOCOR 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ 18.7 μg/g sideww</td>
<td>Hassauer et al. 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Muscle</td>
<td>≤ 2.51 μg/g sideww</td>
<td>Endo et al. 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 0.27 μg/g sideww</td>
<td>Endo et al. 2003</td>
</tr>
<tr>
<td>False killer whale (Pseudorca crassidens)</td>
<td>Japan, coastal waters, Okinawa Province</td>
<td>Mercury</td>
<td>Muscle</td>
<td>≤ 81.0 μg/g sideww</td>
<td>Endo et al. 2005a; 2003</td>
</tr>
</tbody>
</table>

Table 2: Contamination levels in baleen whales

lw = lipid weight; ww = wet weight; dw = dry weight. Values in bold exceed particular national health advice (see table 4). For the Faroe Islands and Greenland, belonging to Denmark, the EU safety limits are taken as a basis.
<table>
<thead>
<tr>
<th>Whale</th>
<th>Location</th>
<th>PCB</th>
<th>DDT</th>
<th>CHL</th>
<th>Muscle</th>
<th>Liver</th>
<th>Kidney</th>
<th>Blubber</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Southern minke whale</strong>&lt;br&gt;(<em>Balaenoptera bonaerensis</em>)</td>
<td>Antarctic (JARPA)</td>
<td>Mercury</td>
<td>Muscle</td>
<td>Liver</td>
<td>????</td>
<td>≤ 0.08μg/g ww</td>
<td>≤ 0.13μg/g ww</td>
<td>≤ 0.09μg/g ww</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>0.008μg/g ww</td>
<td>≤ 0.005μg/g ww</td>
<td>Yasunaga et al. 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>0.008μg/g ww</td>
<td>≤ 0.005μg/g ww</td>
<td>Yasunaga et al. 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td>0.008μg/g ww</td>
<td>≤ 0.005μg/g ww</td>
<td>Yasunaga et al. 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bowhead whale</strong>&lt;br&gt;(<em>Balaena mysticetus</em>)</td>
<td>Beaufort-Chukchi-Sea</td>
<td>PCB</td>
<td>0.54μg/g lw</td>
<td>≤ 0.08μg/g ww</td>
<td>Hoekstra et al. 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>0.04μg/g lw</td>
<td>≤ 0.08μg/g ww</td>
<td>Hoekstra et al. 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td>0.02μg/g lw</td>
<td>≤ 0.08μg/g ww</td>
<td>Hoekstra et al. 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fin whale</strong>&lt;br&gt;(<em>Balaenoptera physalus</em>)</td>
<td>NW Atlantic</td>
<td>PCB</td>
<td>≤ 0.09μg/g ww</td>
<td>≤ 2.58μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>≤ 0.09μg/g ww</td>
<td>≤ 2.58μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Gray whale</strong>&lt;br&gt;(<em>Eschrichtius robustus</em>)</td>
<td>Alaska</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤ 4.4μg/g ww</td>
<td>Varanasi et al. (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 2.3μg/g ww</td>
<td>Varanasi et al. (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>Blubber</td>
<td>≤ 1.2μg/g ww</td>
<td>Varanasi et al. (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td>Blubber</td>
<td>≤ 0.9μg/g ww</td>
<td>Varanasi et al. (1993)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NW America</td>
<td>Mercury</td>
<td>Liver</td>
<td>≤ 0.5μg/g dw</td>
<td>Das et al. 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 0.9μg/g ww</td>
<td>Rowles &amp; Ilyashenko 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>Blubber</td>
<td>≤ 0.5μg/g ww</td>
<td>Rowles &amp; Ilyashenko 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHL</td>
<td>Blubber</td>
<td>≤ 0.15μg/g ww</td>
<td>Rowles &amp; Ilyashenko 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Humpback whale</strong>&lt;br&gt;(<em>Megaptera novaeangliae</em>)</td>
<td>Caribbean</td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 1.5μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NW Atlantic</td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 6.0μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>Blubber</td>
<td>≤ 23.1μg/g ww</td>
<td>Simmonds &amp; Johnston 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sei whale</strong>&lt;br&gt;(<em>Balaenoptera borealis</em>)</td>
<td>Iceland</td>
<td>PCB</td>
<td>0.46μg/g lw</td>
<td>≤ 0.08μg/g ww</td>
<td>Borrell 1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT</td>
<td>0.4μg/g lw</td>
<td>≤ 0.08μg/g ww</td>
<td>Borrell 1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japan, Western North Pacific</td>
<td>Mercury</td>
<td>Boiled meat</td>
<td>≤ 0.08μg/g ww</td>
<td>EIA 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Boiled meat</td>
<td>≤ 0.05μg/g ww</td>
<td>EIA 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blubber</td>
<td>≤ 0.005μg/g ww</td>
<td>EIA 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.47μg/g ww</td>
<td>EIA 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Bryde whale</strong>&lt;br&gt;(<em>Balaenoptera edeni</em>)</td>
<td>Japan, Western North Pacific</td>
<td>Mercury</td>
<td>Muscle</td>
<td>≤ 0.05μg/g ww</td>
<td>Yasunaga &amp; Fujise 2009c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liver</td>
<td>≤ 0.22μg/g ww</td>
<td>Endo et al. 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kidney</td>
<td>≤ 0.49μg/g ww</td>
<td>Yasunaga &amp; Fujise 2009c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ 0.60μg/g ww</td>
<td>Yasunaga &amp; Fujise 2009c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>Blubber</td>
<td>≤ 0.21μg/g ww</td>
<td>Yasunaga &amp; Fujise 2009c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.003μg/g ww</td>
<td>Yasunaga &amp; Fujise 2009c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 3:
Health risks of different chemicals and national health advice for marine food in different regions

<table>
<thead>
<tr>
<th>Substance</th>
<th>Health effects for humans</th>
<th>National health advice</th>
</tr>
</thead>
</table>
| Mercury   | Damage to brain and nervous system, weakening of immune system, MeHg easily passes placenta and may damage the foetus’ development, atherosclerosis, hypertension, increased risks for Parkinson’s disease | Japan: 0.4 μg/g ww  
Canada: 0.5 μg/g ww  
EU, Norway: 0.5-1 μg/g ww  
USA (like WHO): 1 μg/g ww Me-Hg |
| PCB       | Effects on liver, reproduction, immune system, neurobehavioural development, lower birth weight, cancer, dental caries | Japan: 0.5 μg/g ww  
Canada: no advice  
EU: 0.008 ng/g ww  
Norway: 0.2 μg/g ww (meat) |
| DDT       | Suppressing immuno system, mimicking hormones, possibly cancerogenic | USA (as WHO): 5.0 μg/g ww |
| CHL       | headache, nausea, excitability, confusion, and muscle tremors | USA: 0.1 μg/g ww |
| PBDE      | mimicking hormones, possibly cancergenic, impact on neurodevelopment | No data |

### Table 4:
Contamination level in human blood (in μg/l) from different northern regions, maximal levels are highlighted (based on AMAP 2003)

<table>
<thead>
<tr>
<th>Nordic Region</th>
<th>Mercury</th>
<th>PCB</th>
<th>DDT</th>
<th>CHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada, Kivalliq</td>
<td>≤ 12.0</td>
<td>≤ 22.0</td>
<td>≤ 0.35</td>
<td>≤ 6.2</td>
</tr>
<tr>
<td>Canada, Baffin</td>
<td>≤ 34.0</td>
<td>≤ 9.4</td>
<td>≤ 0.47</td>
<td>≤ 2.4</td>
</tr>
<tr>
<td>Canada, Nunavik</td>
<td>≤ 44.0</td>
<td>≤ 16.0</td>
<td>≤ 1.1</td>
<td>≤ 3.9</td>
</tr>
<tr>
<td>Greenland, Nuuk</td>
<td>≤ 3.6</td>
<td>≤ 27.0</td>
<td>≤ 0.37</td>
<td>≤ 3.0</td>
</tr>
<tr>
<td>Greenland, Ittoqqortoormiit</td>
<td>≤ 10.5</td>
<td>≤ 127</td>
<td>≤ 1.3</td>
<td>≤ 15.0</td>
</tr>
<tr>
<td>Greenland, Disco Bay</td>
<td>not available</td>
<td>≤ 21.0</td>
<td>≤ 13.0</td>
<td>≤ 3.9</td>
</tr>
<tr>
<td>Alaska, Atka</td>
<td>not available</td>
<td>≤ 54.0</td>
<td>≤ 0.15</td>
<td>≤ 1.3</td>
</tr>
<tr>
<td>Alaska, St. Paul</td>
<td>not available</td>
<td>≤ 42.0</td>
<td>≤ 0.02</td>
<td>≤ 0.49</td>
</tr>
<tr>
<td>Iceland</td>
<td>not available</td>
<td>≤ 5.5</td>
<td>≤ 0.41</td>
<td>≤ 0.17</td>
</tr>
<tr>
<td>Norway, Lofoten</td>
<td>not available</td>
<td>≤ 6.2</td>
<td>not available</td>
<td>≤ 0.11</td>
</tr>
<tr>
<td>Faroe Islands</td>
<td>≤ 7.5</td>
<td>≤ 14.5</td>
<td>≤ 1.5</td>
<td>≤ 1.4</td>
</tr>
</tbody>
</table>